s Y N95- 19761

AUTOMATED RULE-BASE CREATION
via CLIPS-INDUCE

Patrick M. Murphy

Department of Information & Computer Science
University of California, Irvine, CA 92717
pmurphy@ics.uci.edu
(714) 725-2111

Abstract

Many CLIPS rule-bases contain one or more rule groups that perform classification.
In this paper we describe CLIPS-Induce, an automated system for the creation of a
CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two
components, a decision tree induction component and a C'LIPS production extraction
component. ID3 [1], a popular decision tree induction algorithm, is used to induce a
decision tree from the test cases. CLIPS production extraction is accomplished through
a top-down traversal of the decision tree. Nodes of the tree are used to construct query
rules, and branches of the tree are used to construct classification rules. The learned
CLIPS productions may easily be incorporated into a large CLIPS system that perform
tasks such as accessing a database or displaying information.

INTRODUCTION

Many CLIPS rule-bases contain one or more rule groups that perform classification. In
this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS
classification rule-base from a set of test cases. The rule-base created by C'LIPS-Induce
consists of two sets of rules, a set of user query rules to ask the nser for any missiug
information necessary to perform classification, and a set of classification rules that is
used to make the classification.

In the remainder of the paper, a detailed description of CLIPS-Induce and 1D3 will be
presented, followed by an analysis of CLIPS-Induce and list of potential extensions.

DESCRIPTION

In this section a descriptiou of CLIPS-Induce will be given, along with an example of
its usage on a real-world problem, the Space Shuttle Landing Control problem. The
goal of this classification problem is to determine whether the space shuttle should be
landed manually or automatically.

326

omnQINAL PAZE m
OF PCOR QuaiiTy

CLIPS-Induce takes as input a set of test cases and returns two sets of CLIPS rules
that perform user querying and classification. Each case is described in terms of a set
of feature-value pairs. The same set of features is used for each case. An example case
for the shuttle problem is given in Table I.

Table I: Example case from shuttle problem.

¢ Landing = manual

Stability = stab
e Error = mm

e Sign = nn

e Wind = tail

Magnitude = OutOfRange

Visibility = yes

One feature is identified as the feature to be predicted given the values of the other
features. For the shuttle problem, the feature Landing is to be predicted in terms of
the features Stability, Error, Sign, Wind, Magnitude and Visibility.

A decision tree is constructed from the set of cases using the decision tree construction
algorithm ID3. The tree constructed from the shuttle cases is shown in Figure 1. The
decision tree is then used to construct the user querying and classification rule sets.
The basic organization for CLIPS-Induce to presented in Figure 2.

Decision Tree Construction

A decision tree predicts the value of one feature in terms of the values of other features.
The process by which a prediction is made using a decision trees is deseribed below,

Using the decision tree in Figure I, the value of the feature Landing will be predicted
for the example case shown in Table 1. Starting at the top (root) of the decision tree.
the value of the feature Visibility is checked. Because the value is Yes the node at the
end of the branch labeled Yes is next tested. Since the value for the feature Stability is
stab, the Error node is next checked. Traversal of the tree contimues down the not(ss)
branch (because the value of Error is not ss), across the nun branch and finally down
the nn branch to the leaf labeled Manual. The value for the Landing feature, predicted
by the decision tree for this case is Manual.

ID3 is a decision tree construction algorithm that builds a decision tree consistent with
a set of cases. A high-level description of the algorithm is shown in Table [I. The tree

327

Visibility
No Yes
Automatic Stability

Xstab

Magnitude

not(mm) not(OutOfRange) OutOfRange

Magnitude

not(OutOfRange) OutOfRange

Magnitude (Manual)
not(Strong)A Strong

@utomatic) Wind

tail head
(Automatic) Manual

Figure 1: Decision tree constructed by ID3 using the shuttle cases,

Cases

Construct Decision Tree

Decision Tree l

User Query Rules
Construct User Query Rules Q y

Decision Tree l

Construct Classification Rules Clas-sificatinn Rules

Figure 2: CLIPS-Induce Architecture

328

is constructed in a recursive top-down manner. At each step in the tree’s construction,
the algorithm works on the set of cases associated with a node in the partial tree. If
the cases at the node all have the same value for the feature to he predicted, the node
1s made into a leaf. Otherwise, a set of tests is evaluated to determine which test best
partitions the set of cases down each branch. The metric used to evaluate the partition
made by a particular test is know as information gain (for a more complete description
of information gain and ID3, see [1]). Once a test is selected for a node, the cases are
partitioned down each branch, and the algorithm is recursively called on the cases at
the end of each branch.

Table 11: ID3 Decision Tree Construction Algorithm.

function generate_dtree(cases)
if stop_splitting(cases)
return leaf_class(cases);
else
best_cost := eval_examples_cost(cases);
for all tests()
cost := eval_cost(cases,test);
if cost < best_cost then
best_cost := cost;
best_test := test;
for all case_partitions(cases,best_test)
branches := branches U{generate-dtree(case_partition)};
return (best_test,branches);

There are three types of tests that are used by CLIPS-Induce to coustruct decision
trees:

1. Two branch feature = value test: Oue brauch for feature = value and a second
branch for feature # value.

2. Multi-branch feature = value test: A branch for each of the values that feature
has.

3. Two branch feature > wvalue test: One branch for feature > value and a second
branch for feature < value.

The first and second test types are used for nominal-valued features. c.g. color. Whereas
the third test type is used for features with real or ordered values. e.g. age or size.

329

Rule Generation

The first step in rule generation is to generate the user query rules. The purpose of each
user query rule is to ask the user for the value of a particular feature. The user-defined
function used to ask the actual questions is shown below.

(deffunction ask-question (?question)
(format t “%s ” 7question)

(read))

The query rules are generated such that they only fire when the value for a particular
feature is needed and not already available. If, for example, the values for certain
features were asserted before execution of the classification rules began, query rules for
those features would never fire. Typically, user query rules and classification rules fire
in an interleaved manner.

User query rules are generated via a pre-order traversal of the tree. During the traversal,
each internal node of the tree is associated with a unique identifier that is used to identify
the act of having visited that node during rule execution. An example nser query rule,
for the Sign node in Figure 1, is shown below.

(defrule sign-query-g773
(node node8)
(not (feature sign ?value))
=>
(bind 7answer (ask-question "What is the value of feature sign?™))
(assert (feature sign Tanswer)))

The second step in rule generation is to generate the classification rules. The purpose
of the classification rules is to traverse the decision tree along a path from the root of
the tree to a leaf. Upon reaching the leaf, the value for the feature to be predicted is
asserted to the fact-list. Whereas query rules are associated with internal nodes in the
decision tree, classification rules are associated with branches in the tree. The two rules
for the branches from the Sign node in Figure |, are shown in Table 111

The Sign node is identified as node&. If the value for feature Sign is pp, than (node
noded) will be asserted by the first rule. Node9is associated with the Magnitude node.
If the value for Sign were instead nn, the value manual for the predicted feature Landing
would be asserted by the second rule. In the later case, because no new (node ...) fact
is asserted, execution of the user query and classification rules halts.

330

ONQINAL PASE e
OF POOR auaiiTy

Table I1I: Example classification rules.

(defrule node8-sign-pp
n <- (node node8)
(feature sign pp)
=>
(retract 7n)

(assert (node node9)))

(defrule node8-sign-nn
?n <- (node node8)
feature sign nn)
=>
(retract n)
(assert (feature landing manual)))

ANALYSIS

The first issue to be concerned with in using the CLIPS-Induce, is the time savings
relative to generating the rules by hand. For the shuttle problem, the 25 rules were
generated from a set of 277 cases in only a few seconds. For another problem that deals
with predicting lymph node cancer, 87 rules were generated in less than a minute. Other
problems have been observed to generate rule-bases with as many as 500 rules in very
reasonable amounts of time. Given that a set of test cases is available, CLIPS-Induce
can save a great deal of time.

The second issue concerns the accuracy of the induced rules on new cases. This concern
has been addressed by the area of machine learning where a great deal of research has
been done on the induction of decision trees from cases. Specifically, 1D3 has been
empirically shown to do well at generating decision trees that are accurate on unseen
cases. For example, Figure 3 shows a learning curve for the shuttle problem. Learning
curves show the accuracy of a model (a decision tree) on nnseen cases, as a flunction
of the number of cases used to generate the model. For the shuttle problem, wlien
only 10% of the 277 cases were used to generate the decision trees, the accuracy on the
remaining 90% of the cases is approximately 92%. As the proportion of cases increases,
the accuracy of the constructed decision trees increases.

The third and final issue concerns the availability of a suflicient nnmbers of cases needed
to induce an accurate set of rules (from Figure 3, the fewer the number of cases. the
less accurate 1s the induced decision tree). In answer to this concern, even if there are
only a small number of cases for a problem, the rule-base generated by CLIPS-Induce
can be used as a starting point for a domain expert.

331

ORIGINAL PAGE IS
OF POOR QUALITY

100 1
98 1
S
> 967
J 4
£ 94-
5 94
Q
L]
< g4
90 M L] T T v ¥ I 1
0.0 0.2 04 0.6 0.8 1.0

Proportion of Cases

Figure 3: Average accuracy of decision trees as a function of the proportion of the 277
cases used to construct the decision trees. The accuracy of cach decision tree is based
on the cases not used to construct the tree.

EXTENSIONS

One of the ways that CLIPS-Induce could be extended would be to take advantage
of ID3’s approach for dealing with missing feature values. Currently, the rule-bases,
generated by CLIPS-Induce, halt when the user cannot enter a value for a required
feature. The only drawback to extending CLIPS-Induce in this mauner, is the increased
complexity and reduced understandability of the generated rules.

Another enhancement to CLIPS-Induce would be to use a more soplisticated ask-
question function. User-query rules could be generated that also pass the set of allowable
values or value type to the ask-question function. The extra argument could provide
constraints on the allowable responses made by the user.

The third extension to CLIPS-Induce would be to allow interactive creation of decision
trees. It is often the case that an expert in the field has knowledge that could help in
forming a more accurate and more understandable decision tree.

CONCLUSION

In this paper, CLIPS-Induce, a Common Lisp application that indnces a CLIPS classifi-
cation rule-base from a set of test cases, is described. Given a set of test cases, deseribed
in terms of a fixed set of features, a decision tree is constructed using the decision tree
construction algorithm, ID3. From the decision tree, two sets of rules are extracted.
One set of rules, the user query rules, ask the user for the values of featnres needed to
make a classification. The other set of rules, the classification rules, simulate a traversal
of the decision tree in order to make the prediction that the decision tree would make.
The rule-base formed by CLIPS-Induce can easily be embedded in rule-bases that need
classification rule groups.

332

REFERENCES

1. Quinlan, J.R., “Induction of Decision Trees,” MACHINE LEARNING. Bostou,
Massachusetts, 1(1), 1986, 81-106.

333

